
doi: 10.3390/sym11091165
A total dominating set D of a graph G is said to be a secure total dominating set if for every vertex u ∈ V ( G ) \ D , there exists a vertex v ∈ D , which is adjacent to u, such that ( D \ { v } ) ∪ { u } is a total dominating set as well. The secure total domination number of G is the minimum cardinality among all secure total dominating sets of G. In this article, we obtain new relationships between the secure total domination number and other graph parameters: namely the independence number, the matching number and other domination parameters. Some of our results are tight bounds that improve some well-known results.
matching number, secure total domination, secure domination, independence number, domination
matching number, secure total domination, secure domination, independence number, domination
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
