
doi: 10.3390/sym10100439
Let G = (V, E) be a simple, finite, and connected graph. A subset S = {u1, u2, …, uk} of V(G) is called a resolving set (locating set) if for any x ∈ V(G), the code of x with respect to S that is denoted by CS (x), which is defined as CS (x) = (d(u1, x), d(u2, x), .., d(uk, x)), is different for different x. The minimum cardinality of a resolving set is called the dimension of G and is denoted by dim(G). A security concept was introduced in domination. A subset D of V(G) is called a dominating set of G if for any v in V – D, there exists u in D such that u and v are adjacent. A dominating set D is secure if for any u in V – D, there exists v in D such that (D – {v}) ∪ {u} is a dominating set. A resolving set R is secure if for any s ∈ V – R, there exists r ∈ R such that (R – {r}) ∪ {s} is a resolving set. The secure resolving domination number is defined, and its value is found for several classes of graphs. The characterization of graphs with specific secure resolving domination number is also done.
secure resolving set and secure resolving domination, resolving set, domination
secure resolving set and secure resolving domination, resolving set, domination
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
