Downloads provided by UsageCounts
Background: Inertial measurement units (IMUs) offer the possibility to capture the lower body motions of players of outdoor team sports. However, various sources of error are present when using IMUs: the definition of the body frames, the soft tissue artefact (STA) and the orientation filter. Methods to minimize these errors are currently being used without knowing their exact influence on the various sources of errors. The goal of this study was to present a method to quantify each of the sources of error of an IMU separately. Methods: An optoelectronic system was used as a gold standard. Rigid marker clusters (RMCs) were designed to construct a rigid connection between the IMU and four markers. This allowed for the separate quantification of each of the sources of error. Ten subjects performed nine different football-specific movements, varying both in the type of movement, and in movement intensity. Results: The error of the definition of the body frames (11.3–18.7 deg RMSD), the STA (3.8–9.1 deg RMSD) and the error of the orientation filter (3.0–12.7 deg RMSD) were all quantified separately for each body segment. Conclusions: The error sources of IMU-based motion analysis were quantified separately. This allows future studies to quantify and optimize the effects of error reduction techniques.
football, inertial measurement unit, Chemical technology, Movement, inertial measurement unit; soft tissue artefact; orientation filter; error quantification; football, TP1-1185, Article, 796, orientation filter, Biomechanical Phenomena, error quantification, Motion, soft tissue artefact, Research Design, Humans, Sports
football, inertial measurement unit, Chemical technology, Movement, inertial measurement unit; soft tissue artefact; orientation filter; error quantification; football, TP1-1185, Article, 796, orientation filter, Biomechanical Phenomena, error quantification, Motion, soft tissue artefact, Research Design, Humans, Sports
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 19 | |
| downloads | 15 |

Views provided by UsageCounts
Downloads provided by UsageCounts