
Permanent magnet synchronous motors (PMSMs) have become one of the most important components of modern drive systems. Therefore, fault diagnosis and condition monitoring of these machines have been the subject of many studies in recent years. This article presents an intelligent stator current-data driven PMSM stator winding fault detection and classification method. Short-time Fourier transform is applied in the process of fault feature extraction from the stator phase current symmetrical components signal. Automation of the fault detection and classification process is carried out with the use of three selected machine learning algorithms: support vector machine, naïve Bayes classifier and multilayer perceptron. The concept and online verification of the original intelligent fault diagnosis system with the potential of a real industrial deployment are demonstrated. Experimental results are presented to evaluate the effectiveness of the proposed methodology.
interturn short circuits, machine learning, permanent magnet synchronous motor, condition monitoring, Chemical technology, TP1-1185, permanent magnet synchronous motor; fault diagnosis; condition monitoring; interturn short circuits; artificial intelligence; machine learning; short-time Fourier transform, fault diagnosis, artificial intelligence, Article
interturn short circuits, machine learning, permanent magnet synchronous motor, condition monitoring, Chemical technology, TP1-1185, permanent magnet synchronous motor; fault diagnosis; condition monitoring; interturn short circuits; artificial intelligence; machine learning; short-time Fourier transform, fault diagnosis, artificial intelligence, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
