
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services closer to data sources. EC combined with Deep Learning (DL) is a promising technology and is widely used in several applications. However, in conventional DL architectures with EC enabled, data producers must frequently send and share data with third parties, edge or cloud servers, to train their models. This architecture is often impractical due to the high bandwidth requirements, legalization, and privacy vulnerabilities. The Federated Learning (FL) concept has recently emerged as a promising solution for mitigating the problems of unwanted bandwidth loss, data privacy, and legalization. FL can co-train models across distributed clients, such as mobile phones, automobiles, hospitals, and more, through a centralized server, while maintaining data localization. FL can therefore be viewed as a stimulating factor in the EC paradigm as it enables collaborative learning and model optimization. Although the existing surveys have taken into account applications of FL in EC environments, there has not been any systematic survey discussing FL implementation and challenges in the EC paradigm. This paper aims to provide a systematic survey of the literature on the implementation of FL in EC environments with a taxonomy to identify advanced solutions and other open problems. In this survey, we review the fundamentals of EC and FL, then we review the existing related works in FL in EC. Furthermore, we describe the protocols, architecture, framework, and hardware requirements for FL implementation in the EC environment. Moreover, we discuss the applications, challenges, and related existing solutions in the edge FL. Finally, we detail two relevant case studies of applying FL in EC, and we identify open issues and potential directions for future research. We believe this survey will help researchers better understand the connection between FL and EC enabling technologies and concepts.
data privacy, federated learning, Chemical technology, edge AI, TP1-1185, Review, Cloud Computing, intelligent edge, edge computing, Privacy, Humans, data security, Forecasting
data privacy, federated learning, Chemical technology, edge AI, TP1-1185, Review, Cloud Computing, intelligent edge, edge computing, Privacy, Humans, data security, Forecasting
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 233 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
