<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.
LLN, RPL, objective function, Chemical technology, Objective function, routing metric, Routing metric, TP1-1185, LLN; RPL; objective function; routing metric, Article
LLN, RPL, objective function, Chemical technology, Objective function, routing metric, Routing metric, TP1-1185, LLN; RPL; objective function; routing metric, Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |