
doi: 10.3390/rs17071253
This paper proposes a novel method for Direction of Arrival (DOA) estimation using a deep unfolded LISTA network in a non-uniform metasurface. Traditional DOA estimation methods often face challenges such as limited accuracy, high computational complexity, and poor adaptability to complex signal environments. To address these issues, we optimize a non-uniform metasurface array to reduce hardware costs and mutual coupling effects while enhancing resolution. Additionally, a deep unfolded Learned Iterative Shrinkage Thresholding Algorithm (LISTA) network is constructed by transforming Iterative Shrinkage Thresholding Algorithm (ISTA) iterative steps into trainable neural network layers, combining model-driven logic with data-driven parameter optimization. Simulation results prove that this method enhances higher precision and reduces computational complexity in comparison with traditional algorithms, especially under low SNR conditions. Furthermore, the method exhibits greater generalization ability, making it a reliable approach for high-precision DOA estimation in practical applications.
LISTA, Science, Q, deep unfolded network, DOA estimation, space–time-coding metasurface
LISTA, Science, Q, deep unfolded network, DOA estimation, space–time-coding metasurface
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
