Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polymersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymers
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
https://dx.doi.org/10.17170/ko...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

High Consistency Silicone Rubber Foams

Authors: Hofmann, Timo; Giesen, Ralf-Urs; Heim, Hans-Peter;

High Consistency Silicone Rubber Foams

Abstract

Silicone elastomers are high-performance plastics. In the extrusion process, only high-consistency silicone rubbers were used. In order to reduce the cost and weight, silicone rubbers can be foamed during processing. In this study, high-consistency silicone rubber is processed with different physical and chemical blowing agents. The resulting reaction kinetics, as well as the mechanical and morphological properties, had been investigated and compared with each other. This showed that the chemical blowing agent significantly influenced the crosslinking reaction compared to the microspheres and the water/silica mixture tested, but it also achieved the lowest density compared to the physical blowing agents. When evaluating the foam morphology, it became clear that the largest number of pores was achieved with the microspheres and the largest pores when using the water/silica mixture. Furthermore, it has been shown that the different mechanisms of action of the blowing agents have a major influence on the mechanical properties, such as the micro shore hardness and the foam morphology.

Related Organizations
Keywords

Mikrosphäre, 660, water, Siliconkautschuk, 600, Treibmittel, Peroxide, Article, microspheres, extrusion, Extrudieren, Mechanische Eigenschaft, peroxid, chemical blowing agent, Wasser, silicone foams, Schaumkunststoff

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold