
The measurement of the refractive index typically requires the use of optical ellipsometry which, although potentially very accurate, is extremely sensitive to the structural properties of the sample and its theoretical modeling, and typically requires specialized expertise to obtain reliable output data. Here, we propose a simple diffractive method for the measurement of the refractive index of homogenous solid thin films, which requires only the structuring of the surface of the material to be measured with the profile of a diffraction grating. The refractive index of an exemplary soft-moldable material is successfully estimated over a wide wavelength range by simply incorporating the measured topography and diffraction efficiency of the grating into a convenient scalar theory-based diffraction model. Without the need for specialized expertise and equipment, the method can serve as a simple and widely accessible optical characterization of materials useful in material science and photonics applications.
refractive index; diffraction gratings; scalar diffraction theory; azopolymers; soft lithography, azopolymers; diffraction gratings; refractive index; scalar diffraction theory; soft lithography, refractive index, soft lithography, diffraction gratings, azopolymers, scalar diffraction theory, Article
refractive index; diffraction gratings; scalar diffraction theory; azopolymers; soft lithography, azopolymers; diffraction gratings; refractive index; scalar diffraction theory; soft lithography, refractive index, soft lithography, diffraction gratings, azopolymers, scalar diffraction theory, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
