Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polymersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymers
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

A Morphological Study of Dynamically Vulcanized Styrene-Ethylene-Butylene-Styrene/Styrene-Butylene-Styrene/MethylVinylSilicon Rubber Thermoplastic Elastomer

Authors: Zhao, Chunxu; Chen, Xiaohan; Chen, Xian;

A Morphological Study of Dynamically Vulcanized Styrene-Ethylene-Butylene-Styrene/Styrene-Butylene-Styrene/MethylVinylSilicon Rubber Thermoplastic Elastomer

Abstract

In this work, we prepared thermoplastic silicone rubber (TPSiV) by dynamically vulcanizing different relative proportions of methyl vinyl silicone rubber (MVSR), styrene ethylene butene styrene block copolymer (SEBS), and styrene butadiene styrene block copolymer (SBS). The compatibility and distribution of the MVSR phase and SEBS/SBS phase were qualitatively characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) tests on TPSiV. Subsequently, the backscattered electron signal image was analyzed using a colorimeter, and it was found that the size of the interface layer between the MVSR phase and the SEBS-SBS phase could be quantitatively characterized. This method overcomes the defect of the etching method, which cannot quantitatively analyze the size of the compatible layer between the two polymers. The final experiment proved that the two phases in TPSiV exhibited a “sea-island” structure, in which the MVSR phase acted as a dispersed phase in the SEBS-SBS phase. In addition, the addition of the silane coupling agent KH-907 (γ-isocyanatopropyltriethoxysilane) improved the mechanical properties of TPSiV, increasing the tensile strength by about 40% and the elongation at break by 30%. The permanent tensile deformation increase rate was about 15%. Through the quantitative measurement of the compatible layer, it was found that KH-907 could increase the thickness of the interface layer between the MVSR phase and the SEBS-SBS phase by more than 30%, which explained why the silane coupling agent KH-907 improved the mechanical properties of TPSiV at the micro level.

Related Organizations
Keywords

thermoplastic silicone rubber; backscattered electrons; compatibility layer; scanning electron microscope; dynamic vulcanization, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold