
Human skin is a multilayered physiochemical barrier protecting the human body. The stratum corneum (SC) is the outermost keratinized layer of skin through which only molecules with less or equal to 500 Da (Dalton) in size can freely move through the skin. Unfortunately, the conventional use of a hypothermic needle for large therapeutic agents is susceptible to needle phobia and the risk of acquiring infectious diseases. As a new approach, a microneedle (MN) can deliver therapeutically significant molecules without apparent limitations associated with its molecular size. Microneedles can create microchannels through the skin’s SC without stimulating the proprioceptive pain nerves. With recent technological advancements in both fabrication and drug loading, MN has become a versatile platform that improves the efficacy of transdermally applied therapeutic agents (TAs) and associated treatments for various indications. This review summarizes advanced fabrication techniques for MN and addresses numerous TA coating and TA elution strategies from MN, offering a comprehensive perspective on the current microneedle technology. Lastly, we discuss how microneedling and microneedle technologies can improve the clinical efficacy of a variety of skin diseases.
Review
Review
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
