
Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety.
RS1-441, multivariate analysis, Pharmacy and materia medica, drug stability analysis, drug degradation, Raman spectroscopy, astronaut health, Article
RS1-441, multivariate analysis, Pharmacy and materia medica, drug stability analysis, drug degradation, Raman spectroscopy, astronaut health, Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
