<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied by sensorimotor impairment which alters the patient’s life quality. The regenerative strategies for the injured nervous system are currently limited and mainly allow partial functional recovery, so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy. Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable physicochemical properties and functionality proved beneficial for the transport and delivery/release of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials) represent a promising alternative towards repairing and regenerating the injured nervous system.
RS1-441, Pharmacy and materia medica, nanomaterial, Review, nervous system injury, neuroregeneration
RS1-441, Pharmacy and materia medica, nanomaterial, Review, nervous system injury, neuroregeneration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |