<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Female fertility and reproductive system disorders are influenced by a complex interplay of biological, physiological, and environmental factors. Minerals have emerged as crucial yet often overlooked elements that impact fertility and the prevalence of reproductive system disorders. Background/Objectives: This review aims to provide a comprehensive overview of the multifaceted role of minerals in female fertility, focusing on key areas such as oocyte quality, ovulation, embryo development, oxidative stress, miscarriage, hormonal regulation, environmental exposure, and in-vitro fertilization (IVF) outcomes. Methods: A systematic review was conducted, focusing on randomized controlled trials (RCTs), prospective cohort studies, case-control studies, nested case-control, and observational studies examining mineral supplementation and nutrition in women planning pregnancy or utilizing assisted reproduction technologies (ARTs). Relevant literature was sourced from multiple electronic databases, including PubMed, Scopus, Google Scholar, Web of Science, and the Cochrane Library, using keywords related to minerals and female fertility. The quality of studies was assessed using the Newcastle–Ottawa Scale (NCO) for non-randomized studies and the Risk of Bias (RoB) tool for RCTs. This systematic review has been registered on PROSPERO (registration number is CDR 42024547656). Results: From an initial pool of 20,830 records, 39 articles met the inclusion criteria and were analyzed. The studies addressed various reproductive outcomes influenced by minerals: embryo development, oocyte quality, oxidative stress, miscarriage, hormonal regulation, IVF outcomes, environmental exposure, and minerals as biomarkers. The analysis revealed that minerals like selenium, zinc, and copper are essential for maintaining reproductive health, while exposure to toxic metals such as cadmium and lead is detrimental. Conclusions: This review highlights the crucial role of both mineral supplementation and serum mineral status in female fertility. The findings provide key insights for clinicians to improve reproductive health through targeted mineral intake and monitoring. Further research is needed to refine guidelines for supplementation and serum levels in women with fertility issues.
hormonal regulation, Minerals, miscarriage, Fertilization in Vitro, minerals, Abortion, Spontaneous, Oxidative Stress, Fertility, IVF, Pregnancy, Dietary Supplements, Oocytes, Humans, Female, oocyte quality, Systematic Review, female fertility, Infertility, Female, Randomized Controlled Trials as Topic
hormonal regulation, Minerals, miscarriage, Fertilization in Vitro, minerals, Abortion, Spontaneous, Oxidative Stress, Fertility, IVF, Pregnancy, Dietary Supplements, Oocytes, Humans, Female, oocyte quality, Systematic Review, female fertility, Infertility, Female, Randomized Controlled Trials as Topic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |