
In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian–Calvet calorimetry in the temperature interval (262–358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.
L-threonine, Threonine, Hot Temperature, Lysine, Organic chemistry, L-lysine, L-serine, Article, QD241-441, Methionine, crystalline phase, L-cysteine; L-serine; L-threonine; L-lysine; L-methionine; crystalline phase; heat capacity, Serine, L-cysteine, Cysteine, L-methionine
L-threonine, Threonine, Hot Temperature, Lysine, Organic chemistry, L-lysine, L-serine, Article, QD241-441, Methionine, crystalline phase, L-cysteine; L-serine; L-threonine; L-lysine; L-methionine; crystalline phase; heat capacity, Serine, L-cysteine, Cysteine, L-methionine
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
