
Since the nuclei in a molecule are treated as stationary, it is perhaps natural that interpretations of molecular properties and reactivity have focused primarily upon the electronic density distribution. The role of the nuclei has generally received little explicit consideration. Our objective has been to at least partially redress this imbalance in emphasis. We discuss a number of examples in which the nuclei play the determining role with respect to molecular properties and reactive behavior. It follows that conventional interpretations based solely upon electronic densities and donating or withdrawing tendencies should be made with caution.
dispersion interactions, polarization, electronic density donation and withdrawal, Organic chemistry, nuclear potentials, through-space effects of nuclei, electrostatic potentials at nuclei, Article, QD241-441, electrostatic potentials, atomic and molecular energy relationships
dispersion interactions, polarization, electronic density donation and withdrawal, Organic chemistry, nuclear potentials, through-space effects of nuclei, electrostatic potentials at nuclei, Article, QD241-441, electrostatic potentials, atomic and molecular energy relationships
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
