Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Moleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2018
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2017
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

New Tripentone Analogs with Antiproliferative Activity

Authors: Barbara Parrino; Salviana Ullo; Alessandro Attanzio; Virginia Spanò; Stella Cascioferro; Alessandra Montalbano; Paola Barraja; +3 Authors

New Tripentone Analogs with Antiproliferative Activity

Abstract

Tripentones represent an interesting class of compounds due to their significant cytotoxicity against different human tumor cells in the submicro-nanomolar range. New tripentone analogs, in which a pyridine moiety replaces the thiophene ring originating the fused azaindole system endowed with anticancer activity viz 8H-thieno[2,3-b]pyrrolizinones, were efficiently synthesized in four steps with fair overall yields (34–57%). All tripentone derivatives were tested in the range of 0.1–100 μM for cytotoxicity against two human tumor cell lines, HCT-116 (human colorectal carcinoma) and MCF-7 (human breast cancer). The most active derivative, with GI50 values of 4.25 µM and 20.73 µM for HCT-116 and MCF-7 cells, respectively, did not affect the viability of Caco-2 differentiated in normal intestinal-like cells, suggesting tumor cells as the main target of its cytotoxic action. The same compound was further investigated in order to study its mode of action. Results showed that it did not exert necrotic effects, while induced a clear shift of viable cells towards early apoptosis. Flow cytometric analysis demonstrated that this compound caused cell cycle alteration, inhibiting its progression in S and G2/M phases.

Related Organizations
Keywords

Pyridines, aza-indoles, tripentones, Organic chemistry, Antineoplastic Agents, Apoptosis, Article, 8H-thieno[2, Structure-Activity Relationship, QD241-441, Cell Line, Tumor, Humans, antitumor activity, Cell Proliferation, Dose-Response Relationship, Drug, Molecular Structure, Cell Cycle, proapoptotic agents, HCT116 Cells, Settore CHIM/08 - Chimica Farmaceutica, 3-b]pyrrolizinones, 8H-thieno[2,3-b]pyrrolizinones, MCF-7 Cells, tripentones; aza-indoles; 8H-thieno[2,3-b]pyrrolizinones; antitumor activity; proapoptotic agents, tripentones; aza-indoles; 8<i>H</i>-thieno[2,3-<i>b</i>]pyrrolizinones; antitumor activity; proapoptotic agents, Caco-2 Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research