Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Moleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2016
Data sources: DOAJ
versions View all 5 versions
addClaim

Nanoemulsion Formulations of Fungicide Tebuconazole for Agricultural Applications

Authors: Vianney Díaz-Blancas; Dora Medina; Erika Padilla-Ortega; Raquel Bortolini-Zavala; Melissa Olvera-Romero; Gabriel Luna-Bárcenas;

Nanoemulsion Formulations of Fungicide Tebuconazole for Agricultural Applications

Abstract

Tebuconazole (TBZ) nanoemulsions (NEs) were formulated using a low energy method. TBZ composition directly affected the drop size and surface tension of the NE. Water fraction and the organic-to-surfactant-ratio (RO/S) were evaluated in the range of 1–90 and 1–10 wt %, respectively. The study was carried out with an organic phase (OP) consisting of an acetone/glycerol mixture containing TBZ at a concentration of 5.4 wt % and Tween 80 (TW80) as a nonionic and Agnique BL1754 (AG54) as a mixture of nonionic and anionic surfactants. The process involved a large dilution of a bicontinuous microemulsion (ME) into an aqueous phase (AP). Pseudo-ternary phase diagrams of the OP//TW80//AP and OP//AG54//AP systems at T = 25 °C were determined to map ME regions; these were in the range of 0.49–0.90, 0.01–0.23, and 0.07–0.49 of OP, AP, and surfactant, respectively. Optical microscope images helped confirm ME formation and system viscosity was measured in the range of 25–147 cP. NEs with drop sizes about 9 nm and 250 nm were achieved with TW80 and AG54, respectively. An innovative low-energy method was used to develop nanopesticide TBZ formulations based on nanoemulsion (NE) technology. The surface tension of the studied systems can be lowered 50% more than that of pure water. This study’s proposed low-energy NE formulations may prove useful in sustainable agriculture.

Keywords

QD241-441, organic-to-surfactant ratio, tebuconazole; nanoemulsion; organic-to-surfactant ratio, tebuconazole, nanoemulsion, Organic chemistry, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green
gold