Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mineralsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interpreting Surface Large-Loop Time-Domain Electromagnetic Data for Deep Mineral Exploration Using 3D Forward Modeling and Inversion

Authors: Ming Cheng; Dikun Yang; Qiang Luo;

Interpreting Surface Large-Loop Time-Domain Electromagnetic Data for Deep Mineral Exploration Using 3D Forward Modeling and Inversion

Abstract

Surface transient electromagnetic (TEM) data with large transmitter loops for deep mineral exploration are often complicated by the non-trivial coupling between extended sources and arbitrarily oriented geological targets. This case study reports a TEM field data set acquired across terranes with strong lateral inhomogeneity, which is responsible for the high inconsistency in TEM data patterns along the survey line, as well as for the negative TEM transients (sign reversal) at some near-central loop stations. 3D forward modeling and inversion, as maturing tools in recent years, offer unique opportunities to extract as much geological information from such data as possible. 3D forward simulations of representative synthetic models found that the phenomenon of sign reversal at some TEM stations is associated with compact conductors enclosed by the transmitter loop and receivers that are in the loop, but off the conductor–a situation that is common in large-loop TEM and can only be explained by 3D models. However, 3D inversion of the field data with a uniform subspace as the initial and reference model fails to converge, another point of evidence that 3D inversions of large-loop TEM data are more likely to be subject to stability issues. Our solution is to warm-start the inversion with the representative model in the forward simulation experiments as the initial model, so the ill-posed 3D inversion can escape from local minima. Finally, the vertical contact structure in our 3D-inversion model is verified by a resistivity cross section of the CSAMT method. Our case study demonstrates the demand and capability of 3D electromagnetic modeling and inversion for high-resolution deep mineral exploration. It also provides an easy-to-follow template for carrying out 3D interpretation for complex geology in practice.

Keywords

3D forward modeling, 3D inversion, mineral exploration, negative transient, time-domain electromagnetic method

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold