
doi: 10.3390/mi16101152
Densely integrated microarchitectures spanning three-dimensional integrated circuits (3D-ICs), chiplet-based designs, and system-in-package (SiP) assemblies make heat a first-order security concern rather than a mere reliability issue. This review consolidates the landscape of thermal side-channel attacks (TSCAs) on densely integrated microarchitectures: we systematize observation vectors and threat models, clarify core concepts and assumptions, compare the most credible evidence from the past decade, and distill the main classes of defenses across the hardware–software stack. We also explain why hardening against thermal leakage is integral to cyber–physical system (CPS) security and outline the most promising research directions for the field. The strategic relevance of this agenda is reflected in current policy and funding momentum, including initiatives by the United States Department of Homeland Security and the Cybersecurity and Infrastructure Security Agency (DHS/CISA) on operational technology (OT) security, programs by the National Science Foundation (NSF) on CPS, and Canada’s Regional Artificial Intelligence Initiative and Cyber-Physical Resilience Program (RAII, >CAD 35 million), to bridge advanced microelectronics with next-generation cybersecurity. This survey offers a clear, high-level map of the problem space and a focused baseline for future work.
Hardware and Architecture, Artificial Intelligence, Physical Unclonable Functions (PUFs) and Hardware Security, Cryptographic Implementations and Security, Review, Electrical and Electronic Engineering, Advancements in Semiconductor Devices and Circuit Design
Hardware and Architecture, Artificial Intelligence, Physical Unclonable Functions (PUFs) and Hardware Security, Cryptographic Implementations and Security, Review, Electrical and Electronic Engineering, Advancements in Semiconductor Devices and Circuit Design
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
