
Diosmin (DIO) is a naturally occurring flavonoid with multiple beneficial effects on human health. The presence of different hydroxyl groups in diosmin structure enables its electrochemical investigation and quantification. This work presents, for the first time, diosmin voltammetric behavior and quantification on the cost-effective, disposable pencil graphite electrode (PGE). Diosmin oxidation on PGE involves two irreversible steps, generating products with reversible redox behaviors. All electrode processes are pH-dependent and predominantly adsorption-controlled. Differential pulse (DPV) and adsorptive stripping differential pulse (AdSDPV) voltammetric methods have been optimized for diosmin quantification o an H-type PGE, in 0.100 mol/L H2SO4. The linear ranges and limits of detection were for DPV 1.00 × 10−6–1.00 × 10−5 mol/L and 2.76 × 10−7 mol/L DIO for DPV and 1.00 × 10−7–2.50 × 10−6 mol/L and 7.42 × 10−8 mol/L DIO for AdSDPV, respectively. The DPV method was successfully applied for diosmin quantification in dietary supplement tablets. The percentage recovery was 99.87 ± 4.88%.
diosmin, adsorptive stripping voltammetry, pencil graphite electrode, cyclic voltammetry, Article, dietary supplements, TJ1-1570, disposable working electrode, Mechanical engineering and machinery, differential pulse voltammetry
diosmin, adsorptive stripping voltammetry, pencil graphite electrode, cyclic voltammetry, Article, dietary supplements, TJ1-1570, disposable working electrode, Mechanical engineering and machinery, differential pulse voltammetry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
