
doi: 10.3390/math8071114
This paper is dealing with a multiple person game model under the antagonistic duel type setup. The unique multiple person duel game with the one-shooting-to-kill-all condition is analytically solved and the explicit formulas are obtained to determine the time dependent duel game model by using the first exceed theory. The model could be directly applied into real-world situations and an analogue of the theory in the paper is designed for solving the best shooting time for hitting all other players at once which optimizes the payoff function under random time conditions. It also mathematically explains to build the marketing strategies for the entry timing for both blue and red ocean markets.
blue ocean strategy, multiple person game, fluctuation theory, QA1-939, strategic choice, time dependent game, duel game, stochastic model, Mathematics
blue ocean strategy, multiple person game, fluctuation theory, QA1-939, strategic choice, time dependent game, duel game, stochastic model, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
