Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

General Markov Chains: Dimension of the Space of Invariant Finitely Additive Measures and Their Ergodicity—Problematic Examples

Authors: Alexander Zhdanok;

General Markov Chains: Dimension of the Space of Invariant Finitely Additive Measures and Their Ergodicity—Problematic Examples

Abstract

This study considers general Markov chains (MCs) with discrete time in an arbitrary phase space. The transition function of the MC generates two operators: T, which acts on the space of measurable functions, and A, which acts on the space of bounded countably additive measures. The operator T*, which is adjoint to T and acts on the space of finitely additive measures, is also constructed. A number of theorems are proved for the operator T*, including the ergodic theorem. Under certain conditions it is proved that if the MC has a finite number of basic invariant finitely additive measures then all of them are countably additive and the MC is quasi-compact. We demonstrate a methodology that applies finitely additive measures for the analysis of MCs, using examples with detailed proofs of their non-simple properties. Some of these proofs in the examples are more complicated than the proofs in our theorems.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold