Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

Pair of Associated η-Ricci–Bourguignon Almost Solitons with Vertical Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds

Authors: Mancho Manev;

Pair of Associated η-Ricci–Bourguignon Almost Solitons with Vertical Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds

Abstract

The manifolds studied are almost contact complex Riemannian manifolds, known also as almost contact B-metric manifolds. They are equipped with a pair of pseudo-Riemannian metrics that are mutually associated to each other using an almost contact structure. Furthermore, the structural endomorphism acts as an anti-isometry for these metrics, called B-metrics, if its action is restricted to the contact distribution of the manifold. In this paper, some curvature properties of a special class of these manifolds, called Sasaki-like, are studied. Such a manifold is defined by the condition that its complex cone is a holomorphic complex Riemannian manifold (also called a Kähler–Norden manifold). Each of the two B-metrics on the considered manifold is specialized here as an η-Ricci–Bourguignon almost soliton, where η is the contact form, i.e., has an additional curvature property such that the metric is a self-similar solution of a special intrinsic geometric flow. Almost solitons are generalizations of solitons because their defining condition uses functions rather than constants as coefficients. The introduced (almost) solitons are a generalization of some well-known (almost) solitons (such as those of Ricci, Schouten, and Einstein). The soliton potential is chosen to be collinear with the Reeb vector field and is therefore called vertical. The special case of the soliton potential being solenoidal (i.e., divergence-free) with respect to each of the B-metrics is also considered. The resulting manifolds equipped with the pair of associated η-Ricci–Bourguignon almost solitons are characterized geometrically. An example of arbitrary dimension is constructed and the properties obtained in the theoretical part are confirmed.

Related Organizations
Keywords

almost contact B-metric manifold, <i>η</i>-Ricci–Bourguignon almost soliton, QA1-939, almost contact complex Riemannian manifold, Sasaki-like manifold, solenoidal vector field, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold