
doi: 10.3390/math12233750
This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on driving modules applied in industrial robots and machine systems. Unlike traditional classification models that depend on labeled fault data for detection, acquiring sufficient fault data in real industrial environments is highly challenging due to various conditions and constraints. To address this issue, we employ a semi-supervised learning approach that relies solely on normal data to effectively detect abnormal patterns, overcoming the limitations of conventional methods. The performance of semi-supervised models was first validated using a statistical feature-based anomaly detection approach, from which the GCN-VAE model was adopted. By combining the spatial feature extraction capability of Graph Convolutional Networks (GCNs) with the latent temporal feature modeling of Variational Autoencoders (VAEs), our method can effectively detect abnormal signs in the data, particularly in the lead-up to system failures. The experimental results confirmed that the proposed GCN-VAE model outperformed existing hybrid deep learning models in terms of anomaly detection performance in the pre-failure section.
probability-based anomaly score, graph convolutional network (GCN), QA1-939, statistical feature, variational autoencoder (VAE), anomaly detection, Mathematics
probability-based anomaly score, graph convolutional network (GCN), QA1-939, statistical feature, variational autoencoder (VAE), anomaly detection, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
