
doi: 10.3390/math11051206
The “semilattices of Mal’cev blocks”, for short SMB algebras, were defined by A. Bulatov. In a recently accepted paper by P. Đapić, P. Marković, R. McKenzie, and A. Prokić, the class of all SMB algebras and its subclass of regular SMB algebras were proved to be varieties of algebras. In this paper, we find an equational base of the first variety and simplify the previously known equational base of the second variety.
variety, QA1-939, finite axiomatizability; variety, finite axiomatizability, Mathematics
variety, QA1-939, finite axiomatizability; variety, finite axiomatizability, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
