
doi: 10.3390/math10152769
Today, cryptographic hash functions have numerous applications in different areas. At the same time, new collision attacks have been developed recently, making some widely used algorithms like SHA-1 vulnerable and unreliable. This article is aiming at the development of a new hashing algorithm that will be resistant to all cryptographic attacks, including quantum collision attacks that potentially pose a threat to some widely used cryptographic hash functions. This algorithm was called Nik-512. The avalanche effect is tested to ensure the cryptographic strength of the developed algorithm. The Nik-512 function is then applied to build a data integrity system which can be used to protect data from malicious users.
cryptography, quantum attack, collision resistance, QA1-939, hashing, Mathematics, collision resistance; cryptography; data integrity; hashing; quantum attack, data integrity
cryptography, quantum attack, collision resistance, QA1-939, hashing, Mathematics, collision resistance; cryptography; data integrity; hashing; quantum attack, data integrity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
