
doi: 10.3390/math10071179
The present work focuses on the attributes of flow, heat, and mass transfer together with double diffusive Cattaneo–Christov mechanism with regards to their applications. The aim of this study is to investigate the non-Newtonian Powell–Eyring fluid flow, taking into account the twofold impact of the heat generation mechanism and the viscous dissipation due to an extensible sheet. The chemical reaction between the fluid particles and the fluid variable properties is assumed in this study. The motive behind this study is the continuous and great interest in the utilization of non-Newtonian liquids in organic and technical disciplines. This model is administered and governed by the momentum equation, energy equation, and concentration, all of which are in the form of partial differential equations. With the help of the shooting technique, the numerical solution is obtained. Graphs show the characteristics of flow, heat, and mass transfer mechanisms for various governing parameters. Additionally, significant physical non-dimensional quantities have been presented in a tabular form. The outcomes detect that increasing the Deborah number, which is connected with the mass transfer field and the chemical reaction parameter, decreases the concentration distribution.
chemical reaction, Cattaneo–Christov model, Cattaneo–Christov model; Powell–Eyring fluid; chemical reaction; variable fluid properties, Powell–Eyring fluid, variable fluid properties, QA1-939, Mathematics
chemical reaction, Cattaneo–Christov model, Cattaneo–Christov model; Powell–Eyring fluid; chemical reaction; variable fluid properties, Powell–Eyring fluid, variable fluid properties, QA1-939, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
