Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Machine Learning and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Machine Learning and Knowledge Extraction
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Implementation of a Self-Supervised Algorithm for Vein Structural Patterns Analysis Using Advanced Unsupervised Techniques

Authors: Swati Rastogi; Siddhartha P. Duttagupta; Anirban Guha;

Design and Implementation of a Self-Supervised Algorithm for Vein Structural Patterns Analysis Using Advanced Unsupervised Techniques

Abstract

Compared to other identity verification systems applications, vein patterns have the lowest potential for being used fraudulently. The present research examines the practicability of gathering vascular data from NIR images of veins. In this study, we propose a self-supervision learning algorithm that envisions an automated process to retrieve vascular patterns computationally using unsupervised approaches. This new self-learning algorithm sorts the vascular patterns into clusters and then uses 2D image data to recuperate the extracted vascular patterns linked to NIR templates. Our work incorporates multi-scale filtering followed by multi-scale feature extraction, recognition, identification, and matching. We design the ORC, GPO, and RDM algorithms with these inclusions and finally develop the vascular pattern mining model to visualize the computational retrieval of vascular patterns from NIR imageries. As a result, the developed self-supervised learning algorithm shows a 96.7% accuracy rate utilizing appropriate image quality assessment parameters. In our work, we also contend that we provide strategies that are both theoretically sound and practically efficient for concerns such as how many clusters should be used for specific tasks, which clustering technique should be used, how to set the threshold for single linkage algorithms, and how much data should be excluded as outliers. Consequently, we aim to circumvent Kleinberg’s impossibility while attaining significant clustering to develop a self-supervised learning algorithm using unsupervised methodologies.

Related Organizations
Keywords

TK7885-7895, Computer engineering. Computer hardware, unsupervised learning approach, self-supervised learning, vascular mining, cluster analysis, vascular pattern recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold