
doi: 10.3390/ma18030471
pmid: 39942138
With the development of space technology, in situ resource utilization (ISRU) of lunar resources holds great potential for constructing lunar bases. This study, for the first time, proposes the in situ construction of lunar soil simulants-based battery systems. When novel ilmenite cathode materials are applied in aqueous aluminum-ion batteries (AAIBs), a facile ball milling treatment is used to simulate the natural characteristics of lunar-based ilmenite with proper electrochemical performance. The in situ constructed lunar soil-based batteries demonstrated a practical capacity of 68.1 mAh g−1 at 1.0 A g−1 with a capacity retention rate of 89.6% after 100 cycles. Even at a high current density of 5.0 A g−1, the as-prepared batteries still maintained a capacity of 41.7 mAh g−1. This study provides a promising energy storage solution for lunar bases and promotes sustainable energy technologies through in situ utilization of lunar resources.
Article
Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
