Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Insectsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Insects
Other literature type . 2023
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Insects
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Insects
Article . 2023
Data sources: DOAJ
versions View all 5 versions
addClaim

Evaluation of the Predatory Mite Neoseiulus barkeri against Spider Mites Damaging Rubber Trees

Authors: Junyu Chen; Lijiu Zheng; Zhengpei Ye; Jianyun Wang; Fangping Zhang; Yueguan Fu; Chenghui Zhang;

Evaluation of the Predatory Mite Neoseiulus barkeri against Spider Mites Damaging Rubber Trees

Abstract

The spider mites Eotetranychus sexmaculatus, Eutetranychus orientalis and Oligonychus biharensisin are severe pests of rubber trees in China. The predatory mite Neoseiulus barkeri has been found to be a natural enemy of these three pests, while nothing is known about the biological performance of this phytoseiid predator against these phytophagous mites. In this study, the development, survivorship, reproduction, adult longevity, fecundity, sex ratio and population growth parameters of N. barkeri fed on these pests were evaluated in comparison to the factitious prey Tyrophagus putrescentiae in the laboratory at 25 ± 1 °C, 75 ± 5% relative humidity and a 12:12 (L:D) h photoperiod. The results showed that N. barkeri could develop from egg to adult and reproduced successfully on the three preys. The survival rate of N. barkeri from egg to adult was higher when fed on E. orientalis (100%) and T. putrescentiae (100%) than when fed on O. biharensisin (93.60%) and E. sexmaculatus (71.42%). The shortest and longest generation time for N. barkeri were observed on E. orientalis with 6.67 d and E. sexmaculatus with 12.50 d, respectively. The maximum fecundity (29.35 eggs per female) and highest intrinsic rate of increase (rm = 0.226) were recorded when N. barkeri fed on E. orientalis, while feeding on E. sexmaculatus gave the minimum fecundity (1.87 eggs per female) and lowest reproduction rate (rm = 0.041). The values of these parameters for N. barkeri evaluated on O. biharensisin were found to be comparable to those obtained on T. putrescentiae. The sex ratio of N. barkeri progeny on the preys mentioned above, apart from O. biharensisin, was female biased. According to the findings, N. barkeri could serve as a promising biocontrol agent against E. orientalis and O. biharensisin, and possibly E. sexmaculatus on rubber trees.

Related Organizations
Keywords

mite, mite; development; fecundity; population growth; biological control, fecundity, population growth, Science, Q, biological control, development, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold