
Privacy-preserving computation (PPC) enables encrypted computation of private data. While advantageous in theory, the complex technology has steep barriers to entry in practice. Here, we derive design goals and principles for a middleware that encapsulates the demanding cryptography server side and provides a simple-to-use interface to client-side application developers. The resulting architecture, “Federated Secure Computing”, offloads computing-intensive tasks to the server and separates concerns of cryptography and business logic. It provides microservices through an Open API 3.0 definition and hosts multiple protocols through self-discovered plugins. It requires only minimal DevSecOps capabilities and is straightforward and secure. Finally, it is small enough to work in the internet of things (IoT) and in propaedeutic settings on consumer hardware. We provide benchmarks for calculations with a secure multiparty computation (SMPC) protocol, both for vertically and horizontally partitioned data. Runtimes are in the range of seconds on both dedicated workstations and IoT devices such as Raspberry Pi or smartphones. A reference implementation is available as free and open source software under the MIT license.
propaedeutic framework, ddc:610, cryptography, cloud computing, federated computing, privacy-preserving computing, secure multiparty computation, Information technology, T58.5-58.64
propaedeutic framework, ddc:610, cryptography, cloud computing, federated computing, privacy-preserving computing, secure multiparty computation, Information technology, T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
