
handle: 1903/31107
In this paper, we show how volume rendering with a Programmable Transfer Function can be used for the effective and comprehensible visualization of WiFi signals. A traditional transfer function uses a low-dimensional lookup table to map the volumetric scalar field to color and opacity. In this paper, we present the concept of a Programmable Transfer Function. We then show how generalizing traditional lookup-based transfer functions to Programmable Transfer Functions enables us to leverage view-dependent and real-time attributes of a volumetric field to depict the data variations of WiFi surfaces with low and high-frequency components. Our Programmable Transfer Functions facilitate interactive knowledge discovery and produce meaningful visualizations.
transfer functions; volume rendering; WiFi visualization; data visualization; network rendering, volume rendering, network rendering, transfer functions, data visualization, WiFi visualization, Information technology, T58.5-58.64, 004
transfer functions; volume rendering; WiFi visualization; data visualization; network rendering, volume rendering, network rendering, transfer functions, data visualization, WiFi visualization, Information technology, T58.5-58.64, 004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
