Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants

Authors: Mokgerwa Zacharia Monama; Fisayo Olotu; Özlem Tastan Bishop;

Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants

Abstract

Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural–dynamical attributes that may be essential for the protein’s catalytic functions, particularly at the βfork loop 2, β’zinc-binding domain, the β’ trigger loop and β’jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.

Related Organizations
Keywords

Antitubercular Agents, antitubercular drug resistance, Mycobacterium tuberculosis, DNA-Directed RNA Polymerases, rifampicin, Article, RNAP processivity, missense mutations, Bacterial Proteins, RNA polymerase, Drug Resistance, Bacterial, Mutation, Tuberculosis, Multidrug-Resistant, Humans, RNA, Rifampin, <i>Mycobacterium tuberculosis</i>

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold