<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.3390/ijgi10060380
handle: 10084/146081
The main challenge in the renewal and updating of the Cadastre of Real Estate of the Czech Republic is to achieve maximum efficiency but to retain the required accuracy of all points in the register. The paper discusses the possibility of using UAV photogrammetry and laser scanning for cadastral mapping in the Czech Republic. Point clouds from images and laser scans together with orthoimages were derived over twelve test areas. Control and check points were measured using geodetic methods (RTK-GNSS and total stations). The accuracy of the detailed survey based on UAV technologies was checked on hundreds of points, mainly building corners and fence foundations. The results show that the required accuracy of 0.14 m was achieved on more than 80% and 98% of points in the case of the image point clouds and orthoimages and the case of the LiDAR point cloud, respectively. Nevertheless, the methods lack completeness of the performed survey that must be supplied by geodetic measurements. The paper also provides a comparison of the costs connected to traditional and UAV-based cadastral mapping, and it addresses the necessary changes in the organisational and technological processes in order to utilise the UAV based technologies.
impact assessment, Geography (General), UAV, photogrammetric mapping, laser scanning, data quality, G1-922, cadastre, geometric accuracy
impact assessment, Geography (General), UAV, photogrammetric mapping, laser scanning, data quality, G1-922, cadastre, geometric accuracy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |