
If baryosynthesis is strongly nonhomogeneous, macroscopic regions with antibaryon excess can be created in the same process from which the baryonic matter is originated. This exotic possibility can become real, if the hints to the existence of antihelium component in cosmic rays are confirmed in the AMS02 experiment, indicating the existence of primordial antimatter objects in our Galaxy. Possible forms of such objects depend on the parameters of models of baryosynthesis and evolution of antimatter domains. We elaborate the formalism of analysis of evolution of antibaryon domain with the account for baryon-antibaryon annihilation at the domain borders and possible “Swiss cheese” structure of the domain structure. We pay special attention to evolution of various forms of high, very high and ultrahigh density antibaryon domains and deduce equations of their evolution in the expanding Universe. The proposed formalism will provide the creation of evolutionary scenarios, linking the possible forms and properties of antimatter bodies in our Galaxy to the mechanisms of nonhomogeneous baryosynthesis.
General Relativity, antibaryons, antibaryon annihilation, Astronomy, Classical General Relativity and exact solutions, QB1-991
General Relativity, antibaryons, antibaryon annihilation, Astronomy, Classical General Relativity and exact solutions, QB1-991
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
