
Fractal analysis (FA) is a contemporary computational technique that can assist in identifying and assessing nuanced structural alterations in cells and tissues after exposure to certain toxic chemical agents. Its application in toxicology may be particularly valuable for quantifying structural changes in cell nuclei during conventional microscopy assessments. In recent years, the fractal dimension and lacunarity of cell nuclei, considered among the most significant FA features, have been suggested as potentially important indicators of cell damage and death. In this study, we demonstrate the feasibility of developing a random forest machine learning model that employs fractal indicators as input data to identify yeast cells treated with oxidopamine (6-hydroxydopamine, 6-OHDA), a powerful toxin commonly applied in neuroscience research. The model achieves notable classification accuracy and discriminatory power, with an area under the receiver operating characteristics curve of more than 0.8. Moreover, it surpasses alternative decision tree models, such as the gradient-boosting classifier, in differentiating treated cells from their intact counterparts. Despite the methodological challenges associated with fractal analysis and random forest training, this approach offers a promising avenue for the continued exploration of machine learning applications in cellular physiology, pathology, and toxicology.
fractal dimension, QA299.6-433, nucleus, artificial intelligence, cell damage, QA1-939, Thermodynamics, QC310.15-319, Mathematics, Analysis, toxicology
fractal dimension, QA299.6-433, nucleus, artificial intelligence, cell damage, QA1-939, Thermodynamics, QC310.15-319, Mathematics, Analysis, toxicology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
