Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Future Internetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Future Internet
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Future Internet
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Performance Benchmark for the PostgreSQL and MySQL Databases

Authors: Sanket Vilas Salunke; Abdelkader Ouda;

A Performance Benchmark for the PostgreSQL and MySQL Databases

Abstract

This study highlights the necessity for efficient database management in continuous authentication systems, which rely on large-scale behavioral biometric data such as keystroke patterns. A benchmarking framework was developed to evaluate the PostgreSQL and MySQL databases, minimizing repetitive coding through configurable functions and variables. The methodology involved experiments assessing select and insert queries under primary and complex conditions, simulating real-world scenarios. Our quantified results show PostgreSQL’s superior performance in select operations. In primary tests, PostgreSQL’s execution time for 1 million records ranged from 0.6 ms to 0.8 ms, while MySQL’s ranged from 9 ms to 12 ms, indicating that PostgreSQL is about 13 times faster. For select queries with a where clause, PostgreSQL required 0.09 ms to 0.13 ms compared to MySQL’s 0.9 ms to 1 ms, making it roughly 9 times more efficient. Insert operations were similar, with PostgreSQL at 0.0007 ms to 0.0014 ms and MySQL at 0.0010 ms to 0.0030 ms. In complex experiments with simultaneous operations, PostgreSQL maintained stable performance (0.7 ms to 0.9 ms for select queries during inserts), while MySQL’s performance degraded significantly (7 ms to 13 ms). These findings underscore PostgreSQL’s suitability for environments requiring low data latency and robust concurrent processing capabilities, making it ideal for continuous authentication systems.

Related Organizations
Keywords

biometrics, benchmark, postgreSQL, Information technology, T58.5-58.64, database, mySQL

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
gold