Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/3x...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/cq...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

Motor-Imagery Classification Using Riemannian Geometry with Median Absolute Deviation

تصنيف الصور الحركية باستخدام الهندسة الريمانية مع الانحراف المطلق المتوسط
Authors: Abu Saleh Musa Miah; Abdur Rahim; Jungpil Shin;

Motor-Imagery Classification Using Riemannian Geometry with Median Absolute Deviation

Abstract

Motor imagery (MI) from human brain signals can diagnose or aid specific physical activities for rehabilitation, recreation, device control, and technology assistance. It is a dynamic state in learning and practicing movement tracking when a person mentally imitates physical activity. Recently, it has been determined that a brain–computer interface (BCI) can support this kind of neurological rehabilitation or mental practice of action. In this context, MI data have been captured via non-invasive electroencephalogram (EEGs), and EEG-based BCIs are expected to become clinically and recreationally ground-breaking technology. However, determining a set of efficient and relevant features for the classification step was a challenge. In this paper, we specifically focus on feature extraction, feature selection, and classification strategies based on MI-EEG data. In an MI-based BCI domain, covariance metrics can play important roles in extracting discriminatory features from EEG datasets. To explore efficient and discriminatory features for the enhancement of MI classification, we introduced a median absolute deviation (MAD) strategy that calculates the average sample covariance matrices (SCMs) to select optimal accurate reference metrics in a tangent space mapping (TSM)-based MI-EEG. Furthermore, all data from SCM were projected using TSM according to the reference matrix that represents the featured vector. To increase performance, we reduced the dimensions and selected an optimum number of features using principal component analysis (PCA) along with an analysis of variance (ANOVA) that could classify MI tasks. Then, the selected features were used to develop linear discriminant analysis (LDA) training for classification. The benchmark datasets were considered for the evaluation and the results show that it provides better accuracy than more sophisticated methods.

Keywords

Artificial intelligence, Support vector machine, linear discriminant analysis, Linear discriminant analysis, Cognitive Neuroscience, Principal component analysis, Pattern recognition (psychology), Cellular and Molecular Neuroscience, motor imagery, Motor imagery, Context (archaeology), FOS: Mathematics, Eye Tracking in Human-Computer Interaction, Psychology, Riemannian geometry, Biology, Psychiatry, Covariance, electroencephalogram (EEG), brain–computer interface, Statistics, Eye Movement Analysis, Life Sciences, Paleontology, Electroencephalography, Neural Interface Technology, Brain-Computer Interfaces in Neuroscience and Medicine, Computer science, Human-Computer Interaction, Brain–computer interface, FOS: Psychology, Head Gesture Recognition, Brain-Computer Interfaces, Computer Science, Physical Sciences, median absolute deviation, Feature extraction, Motor Imagery, Quadratic classifier, Mathematics, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold