Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

A Low Hardware Consumption Elliptic Curve Cryptographic Architecture over GF(p) in Embedded Application

Authors: Xianghong Hu; Xin Zheng; Shengshi Zhang; Shuting Cai; Xiaoming Xiong;

A Low Hardware Consumption Elliptic Curve Cryptographic Architecture over GF(p) in Embedded Application

Abstract

In this paper, a low hardware consumption design of elliptic curve cryptography (ECC) over GF(p) in embedded applications is proposed. The adder-based architecture is explored to reduce the hardware consumption of performing scalar multiplication (SM). The Interleaved Modular Multiplication Algorithm and Binary Modular Inversion Algorithm are improved and implemented with two full-word adder units. The full-word register units for data storage are also optimized. The design is based on two full-word adder units and twelve full-word register units of pipeline structure and was implemented on Xilinx Virtex-4 platform. Design Compiler is used to synthesized the proposed architecture with 0.13 μm CMOS standard cell library. For 160, 192, 224, 256 field order, the proposed architecture consumes 5595, 7080, 8423, 9370 slices, respectively, and saves 17.58∼54.93% slice resources on FPGA platform when compared with other design architectures. The synthesized result uses 35.43 k, 43.37 k, 50.38 k, 57.05 k gate area and saves 52.56∼91.34% in terms of gate count in comparison. The design takes 2.56∼4.07 ms to perform SM operation over different field order under 150 MHz frequency. The proposed architecture is safe from simple power analysis (SPA). Thus, it is a good choice for embedded applications.

Related Organizations
Keywords

adder units, hardware consumption, elliptic curve cryptography, scalar multiplication

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
gold