Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

Single-Image Dehazing Based on Improved Bright Channel Prior and Dark Channel Prior

Authors: Chuan Li; Changjiu Yuan; Hongbo Pan; Yue Yang; Ziyan Wang; Hao Zhou; Hailing Xiong;

Single-Image Dehazing Based on Improved Bright Channel Prior and Dark Channel Prior

Abstract

Single-image dehazing plays a significant preprocessing role in machine vision tasks. As the dark-channel-prior method will fail in the sky region of the image, resulting in inaccurately estimated parameters, and given the failure of many methods to address a large band of haze, we propose a simple yet effective method for single-image dehazing based on an improved bright prior and dark channel prior. First, we use the Otsu method by particle swarm optimization to divide the hazy image into sky regions and non-sky regions. Then, we use the improved bright channel prior and dark channel prior to estimate the parameters in the physical model. Second, we propose a weighted fusion function to efficiently fuse the parameters estimated by two priors. Finally, the clear image is restored through the physical model. Experiments illustrate that our method can solve the problem of the invalidation of the dark channel prior in the sky region well and achieve high-quality image restoration, especially for images with limited haze.

Related Organizations
Keywords

image dehazing; dark channel prior; bright channel prior; Otsu; particle swarm optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
gold