Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

Elastic Downsampling: An Adaptive Downsampling Technique to Preserve Image Quality

Authors: Jose J. García Aranda; Manuel Alarcón Granero; Francisco Jose Juan Quintanilla; Gabriel Caffarena; Rodrigo García-Carmona;

Elastic Downsampling: An Adaptive Downsampling Technique to Preserve Image Quality

Abstract

This paper presents a new adaptive downsampling technique called elastic downsampling, which enables high compression rates while preserving the image quality. Adaptive downsampling techniques are based on the idea that image tiles can use different sampling rates depending on the amount of information conveyed by each block. However, current approaches suffer from blocking effects and artifacts that hinder the user experience. To bridge this gap, elastic downsampling relies on a Perceptual Relevance analysis that assigns sampling rates to the corners of blocks. The novel metric used for this analysis is based on the luminance fluctuations of an image region. This allows a gradual transition of the sampling rate within tiles, both horizontally and vertically. As a result, the block artifacts are removed and fine details are preserved. Experimental results (using the Kodak and USC Miscelanea image datasets) show a PSNR improvement of up to 15 dB and a superior SSIM (Structural Similarity) when compared with other techniques. More importantly, the algorithms involved are computationally cheap, so it is feasible to implement them in low-cost devices. The proposed technique has been successfully implemented using graphics processors (GPU) and low-power embedded systems (Raspberry Pi) as target platforms.

Related Organizations
Keywords

spatial compression, real-time video, image quality, codec, perceptual relevance, linear procedure, low-power devices, image coding, image compression, downsampling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Average
gold