Downloads provided by UsageCounts
This work addresses J.A. Wheeler’s critical idea that all things physical are information-theoretic in origin. In this paper, we introduce a novel mathematical framework based on information geometry, using the Fisher information metric as a particular Riemannian metric, defined in the parameter space of a smooth statistical manifold of normal probability distributions. Following this approach, we study the stationary states with the time-independent Schrödinger’s equation to discover that the information could be represented and distributed over a set of quantum harmonic oscillators, one for each independent source of data, whose coordinate for each oscillator is a parameter of the smooth statistical manifold to estimate. We observe that the estimator’s variance equals the energy levels of the quantum harmonic oscillator, proving that the estimator’s variance is definitively quantized, being the minimum variance at the minimum energy level of the oscillator. Interestingly, we demonstrate that quantum harmonic oscillators reach the Cramér–Rao lower bound on the estimator’s variance at the lowest energy level. In parallel, we find that the global probability density function of the collective mode of a set of quantum harmonic oscillators at the lowest energy level equals the posterior probability distribution calculated using Bayes’ theorem from the sources of information for all data values, taking as a prior the Riemannian volume of the informative metric. Interestingly, the opposite is also true, as the prior is constant. Altogether, these results suggest that we can break the sources of information into little elements: quantum harmonic oscillators, with the square modulus of the collective mode at the lowest energy representing the most likely reality, supporting A. Zeilinger’s recent statement that the world is not broken into physical but informational parts.
information geometry, quantum harmonic oscillator, Science, Physics, QC1-999, Q, Varietats de Riemann, Schrödinger equation, Astrophysics, Article, QB460-466, Bayesian statistical decision, Riemannian manifolds, Estadística bayesiana, Equació de Schrödinger, principle of minimum Fisher’s information, Fisher’s information, Schrödinger’s equation
information geometry, quantum harmonic oscillator, Science, Physics, QC1-999, Q, Varietats de Riemann, Schrödinger equation, Astrophysics, Article, QB460-466, Bayesian statistical decision, Riemannian manifolds, Estadística bayesiana, Equació de Schrödinger, principle of minimum Fisher’s information, Fisher’s information, Schrödinger’s equation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 16 | |
| downloads | 10 |

Views provided by UsageCounts
Downloads provided by UsageCounts