
In this work, we study quantum decoherence as reflected by the dynamics of a system that accounts for the interaction between matter and a given field. The process is described by an important information geometry tool: Fisher’s information measure (FIM). We find that it appropriately describes this concept, detecting salient details of the quantum–classical changeover (qcc). A good description of the qcc report can thus be obtained; in particular, a clear insight into the role that the uncertainty principle (UP) plays in the pertinent proceedings is presented. Plotting FIM versus a system’s motion invariant related to the UP, one can also visualize how anti-decoherence takes place, as opposed to the decoherence process studied in dozens of papers. In Fisher terms, the qcc can be seen as an order (quantum)–disorder (classical, including chaos) transition.
QB460-466, information geometry, Fisher information, Science, Physics, QC1-999, Q, semiclassical descriptions, Astrophysics, Article
QB460-466, information geometry, Fisher information, Science, Physics, QC1-999, Q, semiclassical descriptions, Astrophysics, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
