
doi: 10.3390/e17074863
In this article, we analyze the interrelationships among such notions as entropy, information, complexity, order and chaos and show using the theory of categories how to generalize the second law of thermodynamics as a law of increasing generalized entropy or a general law of complification. This law could be applied to any system with morphisms, including all of our universe and its subsystems. We discuss how such a general law and other laws of nature drive the evolution of the universe, including physicochemical and biological evolutions. In addition, we determine eliminating selection in physicochemical evolution as an extremely simplified prototype of natural selection. Laws of nature do not allow complexity and entropy to reach maximal values by generating structures. One could consider them as a kind of “breeder” of such selection.
QB460-466, category theory, Science, Physics, QC1-999, evolution, Q, complexity, entropy, Astrophysics, information
QB460-466, category theory, Science, Physics, QC1-999, evolution, Q, complexity, entropy, Astrophysics, information
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
