Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dronesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Drones
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Drones
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lightweight UAV Detection Method Based on IASL-YOLO

Authors: Huaiyu Yang; Bo Liang; Song Feng; Ji Jiang; Ao Fang; Chunyun Li;

Lightweight UAV Detection Method Based on IASL-YOLO

Abstract

The widespread application of drone technology has raised security concerns, as unauthorized drones can lead to illegal intrusions and privacy breaches. Traditional detection methods often fall short in balancing performance and lightweight design, making them unsuitable for resource-constrained scenarios. To address this, we propose the IASL-YOLO algorithm, which optimizes the YOLOv8s model to enhance detection accuracy and lightweight efficiency. First, we design the CFE-AFPN network to streamline the architecture while boosting feature fusion capabilities across non-adjacent layers. Second, we introduce the SIoU loss function to address the orientation mismatch issue between predicted and ground truth bounding boxes. Finally, we employ the LAMP pruning algorithm to compress the model. Experimental results on the Anti-UAV dataset show that the improved model achieves a 2.9% increase in Precision, a 6.8% increase in Recall, and 3.9% and 3.8% improvements in mAP50 and mAP50-95, respectively. Additionally, the model size is reduced by 75%, the parameter count by 78%, and computational workload by 30%. Compared to mainstream algorithms, IASL-YOLO demonstrates significant advantages in both performance and lightweight design, offering an efficient solution for drone detection tasks.

Related Organizations
Keywords

EMA, LAMP, FasterNet, TL1-4050, AFPN, lightweight, SIoU, Motor vehicles. Aeronautics. Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold