
handle: 11587/514526 , 11586/477220
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a computer-aided detection/diagnosis system, based on machine learning and deep learning techniques, capable of the following: (1) assisting genetic oncologists in digitizing paper-based pedigree charts, and in generating new digital ones, and (2) automatically predicting the genetic predisposition risk directly from these digital pedigree charts. To the best of our knowledge, there are no similar studies in the current literature, and consequently, no utilization of software based on artificial intelligence on pedigree charts has been made public yet. By incorporating medical images and other data from omics sciences, there is also a fertile ground for training additional artificial intelligence systems, broadening the software predictive capabilities. We plan to bridge the gap between scientific advancements and practical implementation by modernizing and enhancing existing oncological genetic counseling services. This would mark the pioneering development of an AI-based application designed to enhance various aspects of genetic counseling, leading to improved patient care and advancements in the field of oncogenetics.
pedigree charts, artificial intelligence, machine learning, deep learning, pedigree charts, oncogenetics, oncological genetic counseling, oncogenetic, 610, deep learning, 600, QA75.5-76.95, artificial intelligence, machine learning, oncological genetic counseling, oncogenetics, Electronic computers. Computer science
pedigree charts, artificial intelligence, machine learning, deep learning, pedigree charts, oncogenetics, oncological genetic counseling, oncogenetic, 610, deep learning, 600, QA75.5-76.95, artificial intelligence, machine learning, oncological genetic counseling, oncogenetics, Electronic computers. Computer science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
