Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cells
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanisms of Transfer RNA Fragments Functionality Within and Between Cells and Organisms

Authors: Sathyanarayanan Vaidhyanathan; Yan X. Lin; Adesupo A. Adetowubo; Fatmanur Kiliç; Sai Anusha Jonnalagadda; Andrey Grigoriev;

Mechanisms of Transfer RNA Fragments Functionality Within and Between Cells and Organisms

Abstract

Transfer RNA-derived fragments (tRFs) have become a significant category of small non-coding RNAs that likely play vital roles in various cellular functions. Initially, research on small RNAs overlooked tRFs as simple byproducts of tRNA degradation, but recent findings show they are precisely produced molecules that regulate gene expression. Studies have demonstrated that tRFs regulate genes and proteins through various mechanisms, from miRNA-like targeting that relies on Argonaute (AGO) protein to lesser-known modes of action. Recent reports also suggest that tRFs are involved in multiple diseases, including cancer, where they may be utilized as biomarkers. Notably, tRFs can be transported between different cells and tissues of an organism or even across different organisms, further emphasizing their biological significance. Although evidence increasingly indicates that tRFs may function as new regulatory agents in health and disease, their biogenesis and underlying mechanisms are not yet fully understood. Conducting a thorough exploratory analysis of the tRF modes of action could be a valuable resource for advancing this growing field. Our goal in this review is to gather and examine the latest research on tRF biology, focusing on its diverse and dynamic molecular mechanisms discovered in different disease contexts, with a view toward potential applications in medicine. We aim to gain a deeper understanding of tRFs and explore their potential for new therapeutic breakthroughs by combining insights from molecular studies, disease models, and clinical research.

Related Organizations
Keywords

Review

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research