Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomoleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2020
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases

Authors: Irina A. Il’icheva; Konstantin M. Polyakov; Sergey N. Mikhailov;

Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases

Abstract

Nucleoside phosphorylases catalyze the reversible phosphorolysis of nucleosides to heterocyclic bases, giving α-d-ribose-1-phosphate or α-d-2-deoxyribose-1-phosphate. These enzymes are involved in salvage pathways of nucleoside biosynthesis. The level of these enzymes is often elevated in tumors, which can be used as a marker for cancer diagnosis. This review presents the analysis of conformations of nucleosides and their analogues in complexes with nucleoside phosphorylases of the first (NP-1) family, which includes hexameric and trimeric purine nucleoside phosphorylases (EC 2.4.2.1), hexameric and trimeric 5′-deoxy-5′-methylthioadenosine phosphorylases (EC 2.4.2.28), and uridine phosphorylases (EC 2.4.2.3). Nucleosides adopt similar conformations in complexes, with these conformations being significantly different from those of free nucleosides. In complexes, pentofuranose rings of all nucleosides are at the W region of the pseudorotation cycle that corresponds to the energy barrier to the N↔S interconversion. In most of the complexes, the orientation of the bases with respect to the ribose is in the high-syn region in the immediate vicinity of the barrier to syn ↔ anti transitions. Such conformations of nucleosides in complexes are unfavorable when compared to free nucleosides and they are stabilized by interactions with the enzyme. The sulfate (or phosphate) ion in the active site of the complexes influences the conformation of the furanose ring. The binding of nucleosides in strained conformations is a characteristic feature of the enzyme–substrate complex formation for this enzyme group.

Related Organizations
Keywords

nucleoside conformations, Nucleosides, Review, X-ray structures of nucleoside phosphorylases, Microbiology, QR1-502, nucleoside phosphorylases, Catalytic Domain, Animals, Humans, Pentosyltransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research