
In this study, we examine bipolar fuzzy SBCK-subalgebras and their corresponding level sets of bipolar fuzzy sets in the setting of Sheffer stroke BCK-algebras. These concepts contribute significantly to the analysis of bipolar logical structures within this algebraic context. We demonstrate a bidirectional relationship between SBCK-subalgebras and their level sets, proving that each level set derived from a bipolar fuzzy SBCK-subalgebra constitutes a subalgebra, and, conversely, each such subalgebra defines an associated level set. This duality emphasizes the structural interplay between bipolar fuzzy logic and the Sheffer stroke operation in BCK-algebras.
Sheffer stroke (BCK-algebra), BCK-ideal, QA1-939, bipolar fuzzy SBCK-ideal, Mathematics, bipolar fuzzy SBCK-subalgebra
Sheffer stroke (BCK-algebra), BCK-ideal, QA1-939, bipolar fuzzy SBCK-ideal, Mathematics, bipolar fuzzy SBCK-subalgebra
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
